Probability Tools and Techniques 2-1

"Chapter 2 = Probability Tools and Techniques

2.1 Introduction
2.1.1  Chapter Content

This chapter presents basic probability tools and techniques, drawing heavily from McCormick [MCC81}
for the basic probability theory (up to Section 2.9). Alan Monier guided the bulk of the remainder.

2.1.2 Learning Outcomes
The objective of this chapter is to provide the basic probability tools and techniques needed to explore

reactor safety analysis. This will allow the quantification of the concepts and designs dzveloped in the
rest of the course. The overall learning outcomes for this chapter are as follows:

Objective 2.1 | The student shou'd be able to identify the terms and symbols used in probability

calculations.
Condition Closed book written examination.
Standard 100% on key terms and symbols.
Related
concept(s)

Classification | Knowledge | Comprehension | Application | Analysis | Synthesis | Evaluation
Weight a a

Objective 2.2 | The student shouid be able to recall typical values and units of parameters.

Condition Closed book written or oral examination.
Standard 100% on key terms and symbols.
Related

concept(s)

Classification | Knowledge | Comprehension | Application | Analysis | Synthesis | Evaluation
Weight a
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2.2  Definitions and Rules
If event A occurs x times out of n repeated experiments then:
P(A)=probability of event A
-lim (%) (1)
n
(Axiom #1) 0 < P(A) <1 2)
(Axiom #2):  P(A)+P(A) = 1| where A means "not A". 3)
The intersection of 2 events, A, and A,, is denoted:
A NA, ar AJA, or A AND A,
(This is pot A, times A,) 4
The conditional probability P (A, | A;) means the probability of A, given that A, has occurred.
The product rule for probabilities states:
P(A; A, = P(A|A;) P(Ay)
Axiont#3 : Al
(dxiom3) = P(AA) PA) - 6)
For example, if A, is the probability that part 1 fails and A, is the probability that part 2 fails then
P(A, A2) = probability that both 1 and 2 fail
= probability that 2 fails and ( part 1 fails given that part 2 fails).
If the failures are independent,
P(A2| A} =P(A,).
This can be extended to give:
P(AA,...AY) = P(ADP(AA))..PAYAA,...A ) 6)
If events are independent:
P(AA,...AY) = P(A)DP(A,)...P(AY) (7
The unicn of two events is denoted:
A, U A, or A+A, or A OR A, (8)
We have:
P(A)+A) = P(A) + P(A,)) - P(AA) )]
In general:
N N-i N
P(A +A, +..+A) = 2. P(A,) - 2.3 ):I P(A A,_)
n=- n=l m=a+ (10)

. +(-DNPA LA, AY)

If events are independent:

wjs DATEACH\Thai-rs!\Casp2 wp$ Jasuary 7, 1998 18:50



Probability Tools and Technigues

2-4

N

1 - P(A+A,+..+AY =IT [1-P(AY]

o=l
Rare events approximation (and independent)
N
P(A +A,+ .. 4) = [lj P(4,)

and we previously had (equation 7):
P(AA,...A) = P(A)P(A,)....P(AY)

(11)

(12}

(13)
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2.3 The Bayes Equation

Given an event or hypothesis, B, and A, mutually exclusive events or hypotheses (n=1, 2....N):

P(A B) = P(A)) P(B|A)) = P(B)P(A B) (14)
P(BIA)
B) = 2 15
P(A B) = P(A) P(B) (15)
Now, since the events, A, are mutually exclusive:
N
Y. P(AB) =1 (16)
n=}
Multiplying by P(B):
N
P(B) = E; P(B) P(A,|B)
N
= Y P(AB) (17)
n=1
N
= ) P(A) P(BA)
n=1
Substituting 17 into 15:
A) P(BIA_
peap) - P PBIAY

N
> PA,) PBIA,) 1%

m-1
So if we know P(B|A,) then we can calculate P(A [B). This is an important result because it enables you
to "reverse” the order of information. This is especially useful for analyzing rare events.
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2.4 Example - Core Monitoring System

A Core Monitoring System (CMS)is
composed of the 3 sensors as shown:

We know from the manufacturer the failure

probabilities over the period of time under AT e gd)
consideration (this is the axiomatic data):
P(IC) =0.02 " Fmackor
P(TS)=0.04 i | Tarpersurs Sarwor (T5)
P(PS)=10.01 — ]

Testing of the installed system shows that * —
P(CMSI|IC) = 0.10 (i.e., when IC fails, the
CMS fails 10% of the time.

Also P(CM[TS) =0.15

Figure 2.1 Core Monitoring Syst
P(CMS|PS) =0.10 g onitoring System

What is the chance that a failed CMS is caused by a failed TS?

Solution:
P(TS|CMS)= P(IS) P(CMS|TS)
P(IC) P(CMSJIC) +P(TS) P(CMS|TS) + P(PS) P(CM|TS)
- 0.04x0.015 (19)
0.02 x 0.10 + 0.04 x 0.15 + 0.01 x 0.10
= 0.667
Comment:

Based on the axiomatic data P(IC), P(TS) & F{PS) one would expect the TS to be a problem in
proportion to its failure rate relative to the other devices i.e.,
0.04

0.02+0.04+0.01

- i
7 ' (20)

So, in the above example, the testing data, P(B)A,) is used to modify the axiomatic data to yield a
revised relative frequency of sensor failure, given a system failure, by P(A,|B). This is called a posterior
probability. :
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2.5 Failure rate estimation when no failures have occurred
We can use Bayes Equation to glean information from non-events as well.

Consider the case where 4000 fuel shipments have been made with no radioactive release. Can we
determine the probability of release per shipment?

Let B = 4000 shipments with no release
A, = release prob. = 10?
A, = release prob, = 10*

Table 2.1 Bayesian calculations for the example [Source:

MCCS81, page 19]
. .- - |
A4 =release prob. = 10

If A, were true, ther: "
P(BJA,) = (1-107)%%° == 0.0183 1 2 3 4 5 6

e .
since we can assume sl:u.pfnents are . - o o - ot -
independent, the P!’Oba;blilty ofa PBIA)  G0IS3  0.6703 09608  0.999  0.9996  0.9999
single success is 1-10 ; . Uniform prior
and P(BJA,) is just the intersection PA) 01667 01667 0.1667  0.1667  0.1667  0.1667
of 4000 events. PAJB) 0004  0.1443 02068 02144 02152 0215

Nonuniform prior*

"o . P4} 901 0.2 04 0.3 0.08 0.01
Likewise we find (as shown in table PAJR)  0.0002  0.1475  0.4228 03287 00880  0.01i0
2.1):

P(BlA,) = 0.6703 * From 5. Kaplan and B. J. Garrick, On the use of 8 Bayesian reasoning in safety aod

retiability decisions—three examples, Nucl, Technol. 44, 231 (1979).

P(B|A,) = 0.9608

If we know P(A,),...P(A,) we could calculate P(A |B) or the probability of our statement A_ being
actually true. If we assume P(A, ) = 1/N = 1/6, we find that P(A,|B) = 0.04, ie, it is not too likely. If we
use a more likely P(A.) we see that P(A |B) is adjusted downwards and we conclude that the failure rate
is significantly less than 107,

2.6 Probability Distributions

P(X) = f p(x)dx
= cummatwe probability : @D
= P(x < X}
where p(x) = probability density function.

There are two types of systems:
1) Those that operate on demand (ie, safety systems)
2) Those that operate continuously (ie, process systems)
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2.7 Demand Systems

We define:
D, =n* demand
P(D,) = probability of success on demand n
P(D_) = probability of failure on demand n
W, = system works for each demand up to and including demand n.
PW _)=PFKD D,D,..D_ ) L 22

P(ﬁn wn-l) = P(l—)nlwn—l) P(wn-l) (23)

So

P(D,D,D,..D_, D) = P(DW, ) P(W,_))
P (O,DD,.D,_).P (D, _IDD,.D,). . .PD,D,) PD,)
If all demands are alike and independent, this reduces to:

P(D,D,..D,_D,) = P(D) [1-PD)""! (25)

(24)

Data for demand failure is often published using the symbol Q,.

Exainple:
P(IS) for a switch is 10, What is the probability that the switch fails at the end of 3 years when the

switch is used 20 times per week?

Solution:
Number of demands = 20x52x3 = 3120.

o P(DyppolWapge) = 107 (1-1074p110
0.732 x 1074 (26)

This is the same as any single specified failure, say on demand 25 or 87.

If the switch were repaired immediately upon any failure, then the probability that it would fail once at
anytime within the 3 years is just 3120 times the probability that it would fail at any specified demand,
ie, 3120x0.732 x 10 =0.228.
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2.8  Failure Dynamics

Failures are not static events. Let's look at failure dynamics.
f{t)dt = probability of failure in the interval dt at time t

F(t} = accumulated failure probability
t
= f fitHdt’

0

Assuming that the device eventually fails the reliability, R(t) is deﬁﬁed as
R(t) = 1 - F(t)
s t

=ff(t’)dt’ —ff(t’}dt’
0 0

=]' f{tydt’

So,

__ dR@ _ dFQ)
o di dt

27)

(28)

(29)

If A(t) dt = prob. of failure at time t given successful operation ug to time t (defined as the conditional

failure raie), then:

fidt = A(t) dt R(t)

or f{t) = A(t) R(t)
.. R
dt
B P 0
dt
(4R _
o A) dt
R(®)
4R - -
- R{J)? = fl(t)dt In R(t) - In R(0)

Since R(0) = 1,

R(t) = exp|- f A(t)dt
0

If A is constant, (ie, random failures):
R(t) = e™

(30)

€1))

(32)

(33)

(34)

(35)
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Given A(t), we can determine everything else. See table 2.2 for a summary of commonly used terms and
relationships. See figure 2.2 for typical Avs t.

Table 2.2 A summary of equations relating A(t), R(t), F(t), and f{t)

- _ First _ Second _ Third
Word description  Symbol = relationship ~  relationship relationship
Hazard rate A —(I/R) dR/dr  fIY/(1 — F8)  AD/RE)
[ ¢
Reliability R(1) f ‘ A7) dr | = F) exp [ - f o A{7) dr]
t t
Comultive failre ~ F) [ fi) dr I = Rt) e ¢r]
probability 0 v
Failare probahility £ dF(¢)/de —dR(1)/d? MOR()
density

Mean time to failure (MTTF)
f t f{t)dt
MTTF = = f t f(t)dt
f fidt  °
0 (36)
= f t A e™ dt (assuming A = random)
0
=1
A
Availability, A(t)
If a device undergoes repair then R(t) ~ A(t)
R(t) s A(t) < 1. (37

A(t) = R(t) for devices that are not repaired.
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Typical mechanical

equipment \

A (t)

Typical
electriczl
equipment

T L I L N T O Y L Ll

: B |
1 ' n .
lgmm  Ljfe expectancy s Ra CiOm failure
H ; rate
H '
: i 1
time
Burn-in or Wear-out
debugging Useful life period period
period

Figure 2.2 Time dependence of conditional failure (hazard)rate (Source: MCC81, page 26}
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2.9 Continuous operation with Repair
Assume random failures. This implies

A = constant

R(t) = e™ = reliability, illustrated in figure 2.3.

Failure probability = F(t) =1 - R(t)
=1 -e¥, illustrated in figure 2.4.

Let repair occur at time interval, T. Then F(t) is a sawtooth as illustrated in figure 2.5.

If t << A then
2
F()=1 - (1 - At + At )
2 (38)
= At for t < T in any interva!
and t is measured the time of lastrepair.
AT
<F> = 22 .
> (39)
This is a usetul rule of thumb but you can always calculate accurately from:
T e -lti
[Fode ), o
<F> = D _ 0 A
y T 40
0
_AT e
AT '

A common design task is to design a system (composed of components that have a known failure rate) to

meet some target unavailability A (4 = F) . Givena design, the repair interval is the remaining

variable. A frequent repair cycle (low t) gives a low 4 , but such frequent repair may be untenable

due to excessive cost on downtime or even hazard to repair personnel. In such a situation, alternative
designs would have to be considered.

Often, repair may not be required in order to return F to Q. it may be sufficient to simply test the
components to ensure that they are available. This is usually the case for "demand" systems.
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fime time

) o . Figure 2.4 Failure probability vs. Time
Figure 2.3 Reliability vs. Time

time

Figure 2.5 Failure probability with repair
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2.10 Example - Shutdown System

Consider the case of a single shutoff rod (SOR) for a reactor, Given a failure rate based on previous
experience of A = 0.002/year and a required unavailability of <107?, what is the required test period, t?

A= =000l a1
Tomeetthe A target of 107%,
102
$ — =1 )
0.00l/year o (42)

This is certainly a reasonable test period. But if the A target were 107 or if the failure rate were 2 /

year, then the required test period would be 10 years or about 3 times per day! This would not be
reasonable.

A more realistic shutdown system would have a bank of, say, 6 SORs, as illustrated in figure 2.5.

o O
o O
o O

Figure 2.6 Simple SDS
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When the shutdown system (SDS) is activated some, all or none of the rods drop into the core. The
possible events are enumerated in table 2.3.

Assuming that the rods fail independently and that the failure ~Table 2.3 SDS event possibilities
rate is A, then the probability of a given rod failing on

average is: Event # rods # rods fail
<F> = -A'Z—T (= p for conciseness) (43) drop to drop
EO 6 0
as before. And the success probability is 1-p. In general the El 5 1
probability for event E,,k=1,2...nis
N! -
P = — 2 (1-pNkpk E2 4 2
Ey) R (1-p)"*p (44)
E3 3 3
The factor N k T k! gives the number of possible ways for E4 2 4
N-k o E5 1 5
that event to happen, the factor (1-p) is the probability
that N-K rods all successfiiliy drop and the factor p* is the E6 0 6

probability that k all fail to drop.
Thus:

P(E,) = (1-p)°
P(E)) =6(1-p)°p
P(E;) =15 (1-p)'p’
P(E,) =20 (1-p)’p’
P(E,) = 151-p)’p*
P(E,) = 6(1-p)p’
P(E¢) = p*

Since these are the only possibilities, they sum to unity, i,e:

N
§P(Ek) =1 (46)

Normaally, there are more SOR's than necessary for reactor shutdown and it is sufficient to require that,
say, 4 of the 6 rods must drop. If this were the design criteria, then events E_, E, and E, represent the
successful deployment of the SDS. Events E, ~ E, represent system failures.

The system unavailability for a 4 out of 6 criterion is thus:

- N 2

A= If\?;P(l-:k) =1 - Ir.ZOP(Ek)
=1 - (1-p)* - 6(1-pY’p - 15(1-p)'p® 47
where p = —’;—T
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To summanze:

fail test

Table 2.4 SDS summary
- _____ |

Case Rk T Operator Action

(per year)

Orods fail test |[2x10° |1 None

1 rod fail test 0.00098 |1 Repair rod

2 rods fail test | .0008 02 Repair rods

Test every week until rods are repaired
Jormorerods |1 Shurdown since veed at least 4 rods available
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2.11 Fault Tree Example

A more systematic way to carry out the same analysis as per the previous section is to develop a fault
tree. We start by identifying the end result (SDSI fails to deploy) and itemize all the ways that this can
happen. In this case, SDS1 can fail in any one of its 7 modes:

Event E, 0 rods out of service

Event E, 1 rods out of service

Event E, 2 rods out of service

Event E, 3 rods out of service

EventE, 4 rods out of service These modes are automatic failures since at
Event E, 5 rods out of service least 4 rods are required.

Event E, 6 rods out of service

All these modes are mutually exclasive so we
OR their probabilities of failures. The fault tree is shown in figure 2.6. We expand each option until we
can no longer decompose the event or we arrive at a point where we know the probability of failure.

For the case of 0 rods out of service, the probability of being in that mode is (1-p)® as before. Within that
mode, failure occurs if either:

6 rods fail to drop [probability of this failure mode = p°]

5 rods fail to drop {probability of this failure mode = 6 (1-p) p*]

4 rods fail to drop [probability of this failure mode = 15 (1-p)*p*]

3 rods fail to drop.[probability of this failure mode = 20 (1-p)’ p]
These events are mutually exclusive. Thus that portion of the tree is expanded as shown. The
unavailability of SDS1 while in the E, raode is simply:

A, = Y failure modes when 0 rods are out of service

= p% + 6(1-p)p° + 15(1-pyp* + 20(1-p)p’ (49)
At
where p = 5

The contribution to unavailability of the system for this segment of the fault tree is:

A (no rods out of service) = (1-p)° A, (50)
The other modes can be expanded in like fashion to give:
A, =) failure modes when 1 rod is out of service
= p* + 5(1-p)p* + 10(1-p)’p* + 10(1-p)p?

Y failure modes when 2 rods are out of service
p* + 4(1-p)p* + {1-pyp? + 4(1-p)p

D)

I

As (52)

Finally, the total system lmavailabiiit)_/ is: B _
A =(1-p)° A, + 6(1-pYp A, + 15(1-p)'p? A, (53)

Note that the system unavailability does not include the unavailability for modes 3 through 6 since these
are modes where the unavailability if known. In those cases, the plant would be shut down and put in a
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fail safe mode by other means. Thus, these modes do not contribute to operating unavailability.

Also note that, in contrast to the example developed in the previous section, the above is based on a
common T. In the previous example t was varied within each mode to meet the target unavailability so
that:

A=Ag=A =A = AL, (54)
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SDSH1 fails
to deploy
SDS1 fails SDS1 fails sDS1 fails SDS1 fails SDS1 fails SD31 fails SDS1 fails
in E0 mode in E1 mode in E2 mode in E3 mode in E4 mode in E5 mode in E6 mode
-z failure probability = 1
C+1 l + ] [ + ] i once in these modes =
L
1
6 rods 5 rods 4 rods 3rods 4 rods 3 rods 2 rods 1 rods
fail to fail to fail to fail to fail to fail to fail to fail to
drop drop drop drop drop drop drop drop
5rods 4 rods 3 rods 2 rods
fail to fail to fail to fail to
drop drop drop drop

Figure 2,7 SDE1 fault tree
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2.12 2/3 Logic Example

Figure 2.8 illustrates a relay setup that operates on a 2
out of 3 logic, or 2/3 logic. There are 3 physical relays,
D, E and F but each relay has two sets of terminal
pairs, allowing them to be connected as shown. The
relays are normally open but close when a signal (D, E
or F) from their respective channels are received. If
any two channels are activated, then the circuit is
completed and current can flow between top and
bottom. If the sub-circuit is in a safety system circuit,
the safety system is activated when two or more of
channels D, E and F are TRUE. If the probability of
failure of any relay is p, what is the overall
unavailability of the sub-circuit?

ST 5 1R

Fa g

F}a% DaS-
|

Figure 2.8 "2 out of 3' Logic - Relay example

This situation ’s, in fact, completely similar to the SOR

case previously examined. Here success is defined as 2 out of 3 events occurring. The unit fails if 3
relays fail or if 2 relays fail. All other states constitute a working sub-system. This is summarized in
table 2.4. All the states are mutually exclusive. The unavailability, then of the unit is simply the sum of
the failure probabilities:

;x=—?-!—p3+—3!—p2(l—p) le 2.5 Possi .
31 0t 2011 (55) Table 2.5 Possible sub-system states and probabilities
=p* +3p’(l-p)
Condition of relays Condition of | Probability
In general, for a M out of N system: DEF sub-system
k=N =
< N! Nk k (1=0K,
A=Y ——— (1-pN'p _
3 (N-K)'k! (56) 0 =FAILED)
k=M-1
N! N 3
=1- ) —_kTg(l‘P)NkPk 000 0 P
k2 (Nl 001 0 p? (1-p)
010 0 P’ (1-p)
| 011 ! p (1-py’
100 0 p* (1-p)
“ 101 1 p (1-p)
|| 110 1 p (1-py?
“ 111 1 p (1-p)?
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2.13 Ladder Logic

Consider now the system shown in Figure 2.9(a) where the relays D, E and F have two sets of terminals
just like the previous example. In the standby or ready state, the relays are energized closed, providing a
current path from top to bottom. When the system "fires", ie, when signals are received at the relays, the
current path is broken if at least 2 relays change state (go from closed to open). Failure of a component
(a relay in this case) occurs when it fails to change state as requested. The failure modes are the same as
for the previous example and are given in table 2.5. We conclude that the system depicted by figure 2.9

is entirely equivalent to that of figure 2.8.

Since safety systems are generally wired so thata

power failure will invoke the safety system, the ready

state has the relays powered closed and the relays D F D F

open when power is lost. The relays are designed to = = “ =

fail open, thereby tending to fire the safety system if :

the safety system logic or components fail. The MNR  E a1 D E o8 Dé?j D

safety trip signals, for instance, are all wired in series ~
)

and any one signal breaks the current to the magnetic
clutches holding up the shutoff rods.
(B)

In actual systems, the relays of the ladder shown in
figure 2.9 dc not have dusal terminals. Rather,

separate relays are used, depicted as D1, D2, etc. in
figure 2.10. Figure 2.9 2 out of 3' Ladder Logic

(a

Failure of the system due to relay failures now occurs when all 3 ladder steps fzil, ie, when step 1 fails
AND step 2 fails AND step 3 fails. The system will succeed if any step succeeds in breaking the circuit
(assuming signals at all 3 channels D, E and F).

Step 1 fails if either D1 or F2 fails to switch state upon demand (from closed to open). The fault tree is
shown in figure 2.10. The system unavailability is thus:
A = (D1+F2).(E1+D2).(F1+E2)

57
= ) - 8p° e
if all relays fail with probability p. Since Ladd
p<<1, the unavailability of this circuit with 6 - - ! firet stzl;:
relays is significantly lower than the previous D13 X F2 D F2
example which uses 3 relays. Ladder
E1 5 D2 E1 D2second step

We'll see in Chapter 5 how we can combine Ladder
the relay fault tree with the SOR fault treeto  F1§7 .59 E2 F1 E2 third step
give the full fault tree for a shutdown system.

(@ (®)
Figure 2.10 "2 out of 3' Ladder Logic - Separate Relays
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Failure to de-energize
ladder network
| TOP EVENT
Faiure to de-energize Failure to de-energize Failure tv de-energize
ladder flurst step ladder second step ladder tr|1ird step

()

Relay
F1 fails to
open

Relay
E2 fails to

open

Relay
D1 fails to

open

Relay
F2 fails to

open

Relay
E1 fails to
open

Reilay
D2 fails to

open

Figure 2.11 Fault Tree for the Ladder Logic Relays
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2.4 Unavailability Targets

The unavailability of a system at any given time is, in general, a function of the system configuration.
Valves, switches, etc., fail from time to time. System configuration is a function of time. Hence,
unavailability is a function of time, as illustrated in figure 2.7. Safety targets can be defined in terms of
some average unavailability or in terms of an instantaneous unavailability. In the later case, the operating
station would need to continuously monitor the plant status in order to continuously calculate the station
"risk" level. This is likened to having a "risk meter" for the station. Station personnel would respond to
equipment failures that lead to a rise in station risk by fixing equipment, maintaining equipment or
invoking standby or alternate systems. Working to an average unavailability, on the other hand, does not
require such a vigilance; instantaneous risk can be permitted to rise in the short term as long as the
averages are achieved. This is more workable but less precise in maintaining control of station risk.

<A> in the time interval

p

-

time
daach\epTxxis_sver.lo

Figure 2.12 Time dependent unavailability

wig DATEACH Thairsi\Chap2wp$ Junmary 7, 1998 18:50



et

Prabability Tools and Technigues 2-25

2.15 Dormant vs active systems

So far we have focussed on systems that are normally dormant and are required to operate on demand.
Safety systems generally fall into this category. However, some systems, like the Emergency Core
Cooling System (ECCS), are required to activate on demand and to continue to function for some defined
mission time. The normal response of the ECC to a Heat Transport System (HTS) break (termed a Loss
of Coolant Accident or LOCA) is for the ECC to detect the event and initiate the injection of high
pressure (HP) cooling water. Then , after the HT'S have depressurized, medium pressure and finally low
pressure water is injected. The HP water is supplied via a water supplied that is pressurized by gas
cylinders. Medium pressure cooling water is supplied from the dousing water via ECC pumps and low
pressure water is retrieved from the sumps. For CANDU reactors a 3 month mission time has been set.
The ECCS is consequently divided into two separate fault trees for the purposes of analysis: Dormant
ECC and Long Term ECC (designated DECC and LTECC respectively). The DECC fault tree focusses
on failure to detect the LOCA event, failure to initiate high pressure (HP) cooling water, failure to
distribute the flow, and fzilure to provide medium and low pressure water. The LTECC fault tree
focusses on the failure to provide long term low pressure cooling due to pump failure, valve failure, flow
blockage and loss of coolant supply. ECC is discussed in more detail in Chapter 7.

......

Before we get into the specifics of applications, we develop safety criteria and design basis accidents in
the next two chapters.

2.16 Exercises

L. For the example fault tree of Section 2.11, calculate A, from the success modes. Which way is
better
a. in the 4/6 case
b. in the 26/28 case?

2 A horn on a car operates on demand 99.96% of the iime. Consider each event independent from
all others. How many times would you expect to be able to honk the horn with a 50% probability
of not having a single failure?

3. A light bulb has a A(t) = 5x107 t, where t is the time in days.

a. What is the MTTF for the bulb?
b. What is the MTTF if A(t) = 5x107 t?
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