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. Chapter 2 Probability Tools and Techniques

2.1 Introduction

2.1.1 Chapter Content

"This chapter presents basic probability tools and techniques, drawing heavily from McCormick [MCC81]
for the basic probability theory (up to Section 2.9). Alan Monier guided the bulk of the remainder.

2.1.2 Learning Outcomes

The objective of this chapter is to provide the basic probability tools and techniques needed to explore
reactor safety analysis. "This will allow the quantification of the concepts and designs d~veloped in the
rest ofthe course. The overall learning outcomes for this chapter are as follows:

Objective 2.1 The student should be able to identifY the terms and symbols used in probability
calculations.

Condition Closed book written examination.

Standard 100% on key terms and symbols.

Related
concept{s)

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation

Weight a a

Objective 2.2 The student shouid be able to recall typical values and units ofparameters.

Condition Closed book written or oral examination.

Standard 100% on key terms and symbols.

Related
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation

Weight a
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2.2 Definitions and Rules

Ifevent A occurs x times out ofn repeated experiments then:
P(A)=probability of event A

=Iim (~)n-- n
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(I)

(Axiom #1) o ~ P(A) d (2)

(Axiom #2):
- -

P(A)+P(A) I where A means "not A". (3)

(Axiom#3)

The intersection of2 events, A, and A" is denoted:
A, n A2 or A,A2 or A, M'D A2

(This is llll1 A, times A,)

The conditional probability P (A, IA,) means the probability ofA, given that A, has occurred.

The product rule for probabilities states:
P(A, A,) = P(A,IA,) P(A,)

= P(A,IA,) P(A\)

For eX2Jllple, ifA, is the p.obability:hat part I fails and A, is the probability that part 2 fails then
P(A, A2) = probability that both I and 2 fail

= probability that 2 fails and ( part I fails given that part 2 fails).
If the failures are independent,

P(A2 IA;) = P(A,).
This can be extended to give:

P(A,A2····AN) = P(A,)P(A2IA,)....P(ANIA,A,....AN_')

If events are independent:

'The W1icn oftwo event~ is denoted:
AI U A, or AI +A, or A, OR A,.

We have:

IngeneraI:
N N-I N

P(AI ...-~+···+AN) = LP(AN) - E L P(AnAm)
a-I n-l m-a+1

±.. +( -1)N-1p(A,A,...AN)

If events are independent:

(4)

. (5)

(6)

(7)

(8)

(9)

(10)

wJI O:\TEACH\Tlaai-nI\Qllp2.wpI~ 7. 1991 11:50



\
Probability Tools and Techniques

N

1 - P(A,+A,+.... +AN) =11 [I-P(AN)]D-'
Rare events approximation (and independent)

N

P(A,+A2+ ... AN) ~ LP(AN)
.-\

and we previously had (equation 7):
P(A,A,....AN) = P(A,)P(A,).....P(AN)

2-4

(11)

(12)

(13)
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2.3 The Bayes Equation

2-5

Given an event or hypothesis, B, and A" mutually exclusive events or hypotheses (n=I,2....N):
P(AnB) = P(An) P(BIAn) = P(B)P(AnIB) (14)

:. peA IB) = peA ) [P(BIAn)] (15)
n n PCB)

Now, since the events, A" are mutually exclusive:
N

L P(AnIB) = I (16)
n-l

Multiplying by PCB):

Substituting 17 into 15:

N

PCB) = E PCB) P(A.IB)
.,1
N

= E P(A.B)
.-1
N

= L P(A.) P(BIA.)
.·1

N

E P(Am) P(BIAm)
m-I

(17)

(18)

So if we know PCBIA,,) tben we can calculate P(A" IB). Tbis is an important result because it enables you
to "reverse" the order of information. Tbis is especially useful for analyzing rare events.

... D;\TEACH\n.kIl'QlIp2.wpI J-r 7, 1991 11:50
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2.4 Example - Core Monitoring System

A Core Monitoring System (CMS) is
composed of the 3 sensors as shown:

We know from the ma!1.Ufacturer the failure
probabilities over the period of time under
consideration (this is the axiomatic data):

P(lC) =0.02
P(TS) = 0.04
P(PS) = 0.01

Testing of the installed system shows that
P(CMSIIC) = 0.10 (i.e., when IC fails, the
CMS fails 10% of the time.

2-6

AlsoP(CMITS) =0.15
P(CMSIPS) = 0.10

Figure 2.1 Core Monitoring System

What is the chance that a failed CMS is caused by a failed TS?

Solution:

P(TSICMS)- P(TS) P(CMSITS)
P(IC) P(CMSIIC) +P(TS) P(CMSITS) + P(PS) P(CMITS)

0.04xO.015=------'-'-----''-'------
0.02 x 0.10 + 0.04 x 0.15 + 0.01 x 0.10

= 0.667

Comment:

(19)

(20)

Based on the axiomatic data P(IC), P(TS) & P{PS) one would expect the TS to be a problem in
proportion to its failure rate relative to the other devices i.e.,

0.04 = i
0.02+0.04+0.01 7

So, in the above eX3lIlple, the testing dat'i, P(B)IA,,) is used to modify the axiomatic data to yield a
revised relative frequency of sensor failure, given a system failure, by P(A"IB). Tbis is called a posterior
probability.



Probability Tools and Techniques

2.5 Failure rate estimation when no failures have occurred

We can use Bayes Equation to glean information from non-events as well.

Consider the case where 4000 fuel 3hipments have been made with no radioactive release. Can we
determine the probability of release per shipment?

Let B = 4000 shipments with no release
AI = release prob. = 10"
A, = release prob. = 10"

Table 2.1 Bayesian calculations for the example [Source:
MCC81, page 19]

A,; =release prob. = 10"

2-7

IfA, were true, the,,:
P(BIAI) =(1_10·')4000 = 0.0183
since we can assume shipments are
independent, the probability of a
single success is 1-10",
and P(BIA,) is just the intersection
of 4000 events.

Likewise we find (a8 shown in table
2.1):

P(B\A,) = 0.6703
P(B\A,) = 0.9608

n

2 l • 5 6

A. 10-1 10-4 10-1 10- 10-' 10-·
1'(81A.) 0.0183 0.6103 0.%08 0.9960 0.9996 0.99996

Uniform prior
I'(A.) 0.1661 C.I661 0.1667 0.1667 0.1667 0.1667

I'(A.I8) 0.004 0.1443 0.2068 0.2144 0.2152 0.2153

Nonuniforn: prior'"
I'(A.) 0.01 0.2 0.' 0.3 0.08 0.01

I'(A,.!R) 0.0002 O.147~ 0.4228 0.3287 0.0880 0.0110

• From S. K.... aod B. J. Garrick. Oa the use of. Bayetiu reuoalD&io safety ud
ft:tiability ckCisions......dwee eumples. NIICI. T~chMl. ,",231 (t97'9l.

1fwe know P(A,),...P(A,;) we could calculate P(A,.IB) or the probability of our statement A,. being
actually true. lfwe assume P(A,.) = lIN = 1/6, we find that P(A,IB) = 0.04, ie, it is not too likely. 1fwe
use a more likely P(AJ we see that P(A,.IB) is adjusted downwards and we conclude that the failure rate
is significaI1t1y 1e~s than 10".

2.6 Probability Distributions
x

P(X) J p(x)dx

"-
= cumulative probability
= P(x < X)

where p(x) " probability density function.

There are two types of systems:
1) Those that operate on demand (ie, safety systems)
2) Those that operate continuously (ie, process systems)

(21)
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2.7 Demand Systems

We define:
Dn "nih demand
P(11J = probability of success on demand n
P(D n) = probability of failure on demand n
Wn= system works for each demand up to and including demand n.

.. P(Wn_l) = P(DI D2 D3 ... Dn_
l
)

- -
P(Dn Wn_l) = P(DnIWn_l ) P(Wn_l)

So
- -

P(DtDP3..·Dn_1 Dn) = P(DnlWn_l) P(Wn_,)

= P (DnIDtD2..·Dn_l) . P (Dn_,IDID2...Dn_2)....P(D2IDI) P(DI)

If all demands are alike and independent, this reduces to:

P(DP2...D.))n) = P(D) [1-p(D)]n-1

Data for demand fllilure is often published using the symbol Qd'

2-8

(22)

(23)

(24)

(25)

Example:

P(D) for a switch is 10". What is the probability that the switch fails at the end on years when the

switch is used 20 times per week?

Solution:
Number of demands = 20x52x3 = 3120.

:. P(D312oIW3119) = 10-4 (1_10-4)'119

= 0.732 X 10-4•

This is th~ same as any single specified failure, say on demand 25 or 87.

(26)

If the switch were repaired immediately upon any failure, then the probability that it would fail once at
anytime within the 3 years is just 3120 times the probability that it would fail at any specified demand,
i.e., 3120 x 0.732 x 10" =0.228.
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2.8 Failure Dynamics

Failures are not static events. Let's look at failure dynamics.
f(t)dt = probability of failure in the interval dt at time t

F(t) = accumulated failure probability
t

=f f(t)dt'
o

Assuming that the device eventually fails the reliability, R(t) is defin~d as
R(t) = I - F(t)

t

=ff(t ')dt' -Jf(t '}dt'
o 0

=J f(t)dt'
t

So,
f(t) = _ dR(t) = dF(t)

dt dt

2-9

(27)

(28)

(29)

If A(t) dt =prob. offailure at time t given successful operation up to time t (defined as the conditional
failure rate), then:

=

f(t)<lt = A(t) dt R(t)
or f(t) = A(t) R(t)

dR
dt

(30)

dR
dt

dR..
R

-A(t) R(t)

- A(t) dt

(31)

(32)

Since R(O) = I,

R(t) dR:. f R - P(t)dt = In R(t) - In R(O)
R(O)

(33)

(34)

If Ais constant, (ie, random failures):
R(t) = e -At. (35)

..... D:\TEACH\11lIHs1\CUp2.."1'8 J-r 7, 199& tl;j(l
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Given A(t), we can determine everything else. See table 2.2 for a summary of commonly used terms and
relationships. See figure 2.2 for typical AVs l.

Table 2.2 A summary of equations relating A(t), R(t), F(t), and f(t)

'MmI dcsc:ription Symbol = First Second Third
relationship = relationship = relationship

Hazard rate A(t} -(I/R) dR/dl IV)/( I - F(t» I(r)/R(I)

Reliability R(t) f
l
"' I(T) dT I - F(I) exp [ - fo'MT) dT]

()mmlative failure F(I) fol/(T) dT I - R(t) 1 - exp [- tl
A(T) aT]

JIIllbability
lIIiI= probability f(l) dF(t)/dt -dR(t)/dt A(t)R(t)

dcasity

Mean time to failure (MTrF)

[f(t)dt
o

MTrF

[t f(t)dt

..::.0__ = [t f(t)dt

o

(36)

Availabilitv. Aft)

= Jt;\. eAt dt
o
I

=-
A

(assuming A = random)

Ifa device undergoes repair then R(t) - A(t)
R(t) ~ A(t) ~ I.

A(t) = R(t) for devices that are not repaired.

(37)
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h (t)

Typical mechanical
eqUiPment"

., ••. __ . _., __ •• _ ...... _. __ I.
I
I

I

~ Life expectancy .-.:
I
I

I
I

Random failure
rate

I Bum-in or
debugging
period I

time

Useful life period I Wear-out
period

Figure 2.2 Time dependence of conditional failure (bazard)rate [Source: MCC81, page 26]
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2.9 Continuous operation with Repair

Assume random failures. lIDs implies
A= constant
R(t) = e·" = reliability, illustrated in figure 2.3.

Failure probability = F(t) "I - R(t)
"I -e", illustrated in figure 2.4.

Let repair occur at time interval, -r. Then F(t) is a sawtooth as illustrated in figure 2.5.

If-r « t. then

F(t)=1 - (I _ At + A~2 ...)
2

= At for t < -r in any interval
and t is measured the time of lastrepair.

(38)

:.<F> = A-r
2

(39)

T

T

fF(t)dt
o<F>

lIDs is a useful rule of thumb but you can always calculate accurately from:
T

e -"I
tl+ __o

o A
(40)

T

fdt
o

A-r + e-h-I

A-r

A COmmon design task is to design a system (composed of components that have a known failure rate) to

meet some rn.get unavailability A (A = F) . Given a design, the repair interval is the remaining

-
variable. A frequent repair cycle (low -r) gives a low A , but such frequent repair may be untenable

due to excessive cost on downtime or even hazard to repair personnel. In such a situation, alternative
designs would have to be considered.

Often, repair may 110t be required in order to return F to O. it may be sufficient to simply test the
components to ensure that they are available. lIDs is usually the case for "demand" systems.

wJI D:\TEAaI\nDall£:Up1..J~ 7, 1991 11:50
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1

R

1

F

............:::c.....=...~-

)

time

Figure 2.3 Reliability vs. Time

time

Figure 2.4 Failure probability vs. Time

F

time

Figure 2.5 Failure probability with repair
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2.10 Example - Shutdown System

2-14

(41)

Consider the case of a single shutoff rod (SOR) for a reactor. Given a failure rate based on previous
experience of A= 0.002/year and a required unavailability of ~ 10-3

, what is the required test period, "t?

A = A"t = 0.001 "t
2

To meet the A target of 10.3,

10-3

"t ~ --::":":",--­
O.OOllyear

I year (42)

-
TIris is certainly a reasonable test period. But if the A wget were 10" or if the failure rate were 2 /

year, then the required test period would be 10-3 years or about 3 times per day! TIris would not be
reasonable.

A more realistic shutdo\\TI system would have a bank of, say, 6 SORs, as illustrated in figure 2.5.

Figure 2.6 Simple SDS
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When the shutdown system (SDS) is activated some, all or none of the rods drop into the core. The
possible events are enumerated in table 2.3.

(44)

Event # rods # rods fail
drop to drop

EO 6 0

EI 5 I

E2 4 2

E3 3 3

E4 2 4

E5 I 5

E6 0 6

Table 2.3 SDS event possibilities

(43)

In general the

N'The factor . k! gives the number ofpossible ways for
(N-k )!

that event to happen, the factor (I _p)N -, is the probability

that N-k rods all successfuliy drop and the factor pk is the
probability that k all fail to drop.

Assuming that the rods fail independently and that the failure
rate is A, then the probability ofa given rod failing on
average is:

<F> ~ A T (" p for conciseness)
2

as before. And the success probability is I-p.
probability for event E., k = I, 2... n is

P(E ) = N! (I )N-k.. ,
, (N -k)!k! -p P

Thus:

P(Eo) = (I-p)o
P(E,) = 6(I-p)'p
PeE,) = 15 (l_p)4p'
P(E,) = 20 (I-p)'p'
P(E4) = 151-p)'p4
P(E,) = 6( I-p)p'
P(Eo) =po

Since these are the only possibilities, they sum to unity, i,e:
N

L P(E,) = I,-0 (46)

Normally, there are more SOR's than necessary for reactor shutdown and it is sufficient to require that,
say, 4 of the 6 rods must drop. Ifthis were the design criteria, then events Eo, E, and E, represent the
successful deployment of the SDS. Events E, - Eo represent system failures.

The system unavailability for a 4 out of6 criterion is thus:
_ N ~

A = LP(E,) = I - LP(E,),·3 ,-0
= I - (I-p)o - 6(I-p)5p - 15(l-p)4p 2

Atwhere p =-
2

(47)
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To summanz,,:

Table 2.4 SDS summary

2-17

)

Case - Operator ActionA k
't

(per year)

orods fail test 2 x 10"' I None

I rod fail test 0.00098 I Repair rod

2 rods fail test .0008 .02 Repair rods
Test every week until rods are repaired

3 or more rods I Shutdown since need at least 4 rods available
fail test

wJa D;\1'EACH\nai-nl\CUp1.wpI J.-uy7,199I .1:5(1
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2.11 Fault Tree Example

2-18

IThese modes are automatic failures since at
least 4 rods are required.

(49)

A more systematic way to carry out the same analysis as per the previous section is to develop a fault
tree. We start by identitying the end result (SOSI fails to deploy) and itemize all the ways that this can
happen. In this case, SOS I can fail in anyone ofits 7 modes:

Event E. 0 rods out of service
Event E, I rods out ofservice
Event E, 2 rods out of service
Event E, 3 rods out of service
Event E. 4 rods out of service
Event E, 5 rods out of service
Event E, 6 rods out of service

All these modes are mutually exclu.<ive so we
OR their probabilities offailures. The fault tr~e is sho"wn in figure 2.6. We expand each option until we
can no longer decompose the event or we arrive at a point where we know the probabiEty of failure.

For the case of0 rods out of service, the probability ofbeing in that mode is (l-p)' as before. Within that
mode, failure occurs if either:

6 rods fail to drop [probability of this failure mode = p']
5 rods fail to drop [probability of this failure mode = 6 (I-p) p']
4 rods fail to drop [probability ofthis failure mode = 15 (l_p)2 p']
3 rods fail to drop.[probabilit) of this failure mode = 20 (I-p)'p']

These events are mutually exclusive. Thus that portion of the tree is expanded as shown. The
unavailability of SOSI while in the Eo mode is simply:

~ = L failure modes when 0 rods are out of service

= p6 + 6(1-p)ps + 15(I-p),,4 + 20(I-pip 3
A't

where p = -
2

The contribution to unavailability of the system for this segment of the fault tree is:

A (no rods out of service) = (1-p)6 ~

The other modes can be expanded in like fashion to give:

AI = L failure modes when 1 rod is out of service

= pS + 5(I-p)p4 + 10(1-p),,3 + 10(l_p)~2

-
A, = L failure modes when 2 rods are out of service

= p4 + 4(1-p)p3 + 2{1-p),,2 + 4(1-pip

Finally, the total system unavailability is:

A = (1_p)6 ~ + 6(1-p)sp AI + 15(I-p)4p 2 ~

(50)

(51)

(52)

(53)

Note that the system unavailability does not include the unavailability for modes 3 through 6 since these
are modes where the unavailability ifknown. In those cases, the plant would be shut down and put in a



Probability Tools and Techniques

fail safe mode by other means. Thus, these modes do not contribute to operating unavailability.

2-19

Also note that, in contrast to the example developed in the previous section, the above is based on a
common t. In the previous example t was varied within each mode to meet the target unavailability so
that:

- - -
A = Ao = Al = ~ = AIarget (54)
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SOSl fails
todepley

I
(2)
I

I I I I
SOSl fails SOSl fails SOSl fails SOSl fails SOSl fails I SO'll fails SOSl fails
in EO mode in E1 mode in E2 mode in E3mode in E4 mode in E5mode in E6 mode

cb cb cb <I failure erobability = 1 !>once in these mode3

I L

I

I I I I I I
6 rods 5 rods 4 rods 3 rods 4 rods 3 rods 2 rods 1 rods
fail to faille fail to fail to fail to faille faille fail to
drop drop drop drop drop drop drop drop

I I I
5 rods 4 rods 3 rods 2 rods
faille fail to fail to faille
drop drop drop drop

Figure 2.7 SOS1 fault tree
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2.12 2 I 3 Logic Example

Figure 2.8 illustrates a relay setup that operates on a 2
out of 3 logic, or 2/3 logic. There are 3 physical relays,
D, E and F but each relay has two sets of terminal
pairs, allowing them to be connected as shown. The
relays are normally open but close when a signal (D, E
or F) from their respective channels are received. If
any two channels are activated, then the circuit is
completed and current can flow between top and
bottom. If the sub-circuit is in a safety system circuit,
the safety system is activated when two or more of
channels D, E and F are TRUE. If the probability of
failure ofany relay is p, what is the overall
unavailability nfthe sub-circuit? Figure 2.8 '2 out of 3' Logic - Relay example

Condition of relays Condition of Probability
DEF sub-system
(I = OK,
O=FAll..ED)

000 0 p'

001 0 p2 (I-p)

010 0 p2 (I-p)

011 I P (l_p)2

100 0 p2 (I-p)

101 I P (l_p)2

110 I P (l_p)2

III I p (I-pi

Table 2.5 Possible sub-system states and probabilities

(56)

In general, for a M out ofN system:
k·N NIA = E . (l_p)N-~k
k.M (N-k)!k!

k·M-1 NI
1 ~ . (I )N-k... k

= - f:1J (N-k)!k! -p I'

This situation ;s, in fact, completely similar to the SOR
case previously examined. Here success is defined as 2 out of 3 events occurring. The unit fails if 3
relays fail or if 2 relays fail. All other states constitute a working sub-system. This is summarized in
table 2.4. All the states are mutually exclusive. The unavailability, then of the unit is simply the sum of
the failure probabilities:

- 3' 3'A - . 3 • 2 (1- )
- 3! O!p + 2! I! P P (55)

= p3 + 3 p2 (I-p)

)
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2.13 Ladder Logic

Consider now the system shown in Figure 2.9(a) where the relays D, E and F have two sets of terminals
just like the previous example. In the standby or ready state, the relays are energized closed, providing a
current path from top to bottom. When the system "fires", ie, when signals are received at the relays, the
current path is broken if at least 2 relays chlsnge state (go from closed to open). Failure of a component
(a relay in this case) occurs when it fails to change state as requested. The failure modes are the same as
for the previous example and are given in table 2.5. We conclude that the system depicted by figure 2.9
is entirely equivalent to that of figure 2.8.

Since safety systems are generally wired so that a
power failure will invoke the safety system, the ready
state has the relays powered closed and the relays
open when power is lost. The reiays are designed to
fail open, thereby tending to fire the safety system if
the safety system logic or components fail. The MNR
safety trip signals, for instance, are all wired in series
and anyone signal breaks the current to the magnetic
clutches holding up the shutoff rods.

In actual systems, the relays of the ladder shown in
figure 2.9 de not have dU81 tcrmina!s. Rather,
separate relays are used, depicted as D I , D2, etc. in
figure 2.10.

F

D =

E

(a) (al
Figure 2.9 '2 out 00' Ladder Logic

Failure of the system due to relay failures now occurs when all 3 ladder steps fail, ie, when step I fails
AND step 2 fails AND step 3 fails. The system will succeed if any step succeeds in breaking the circuit
(assuming signals at all 3 channels D, E and F).

Ladder
E2 third step

Ladder
F2 first step

Ladder
02 second step

'---,----'

E2

02

F2

(57)

We'll see in Chapter 5 how we can combine
the relay fault tree with the SOR fault tree to
give the full fault tree for a shutdown system.

Step I fails if either D I or F2 fails to switch state upon demand (from closed to open). The fault tree is
shown in figure 2.10. The system unavailability is thus:
- ------
A = (01 +F2).(EI +D2).(FI +E2)

= (2p)' = 8p'

ifall relays fail with probability p. Since
p<< I, the unavailability of this circuit with 6
relays is significantly lower than the previous
example which uses 3 relays.

(a) (Il)

Figure 2.10 '2 out of3' Ladder Logic - Separate Relays
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Failure to de-energize
ladder network

TOP EVENT

~---'------,

Failure to de-energize
ladder third step

Relay
E2 fails to

open

Relay
F1 fails to

open

Failure to de-energize
ladder first step

Figure 2.11 Fault Tree for the Ladder Logic Relays

• D:\TEACH\TUi-nI'Olp1.wpI J->' 7, 1991 11:50
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2.'4 Unavailability Targets

2-24

The unavaihbility of a system at any given time is, in general, a function of the system configuration.
Valves, switches, etc., fail from time to time. System configuration is a function of time. Hence,
unavailability is a function of time, as illustrated in figure 2.7. Safety targets can be defined in terms of
some average unavailability Q! in terms of an instantaneous unavailability. In the later case, the operating
station would need to continuously monitor the plant status in order to continuously calculate the station
"risk" level. This is likened to having a "risk meter" for the station. Station personnel would respond to
equipment failures that lead to a rise in station risk by fixing equipment, maintaining equipment or
invoking standby or alternate systems. Working to an average unavailability, on the other hand, does not
require such a vigilance; instantaneous risk can be permitted to rise in the short term as long as the
averages are achieved. This is more workable but less precise in maintaining control of station risk.

<A> in the time interval
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Figure 2.12 Time dependent unavailability
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2.15 Dormant vs active systems

2-25

So far we have focussed on systems that are nonnally dormant and are required to operate on demand.
Safety systems generally fall into this category. However, some systems, like the Emergency Core
Cooling System (ECCS), are required to activate on demand and to continue to function for some defined
mission time. The normal response of the ECC to a Heat Transport System (HIS) break (termed a Loss
of Coolant Accident or LOCA) is for the ECC to detect the event and initiate the injection ofhigh
pressure (lIP) cooling water. Then, after the HIS have depressurized, medium pressure and finally low
pressure water is injected. The lIP water is supplied via a water supplied that is pressurized by gas
cylinders. Medium pressure cooling water is supplied from the dousing water via ECC pumps and low
pressure water is retrieved from the sumps. For CANDU reactors a 3 month mission time has been set.
The ECCS is consequently divided into two separate fault trees for the purposes of analysis: Dormant
ECC and Long Term ECC (desigtlllted DECC and L1ECC respectively). The DECC fault tree focusses
on failure to detect the LOCA event, failure to initiate high pr"ssure (lIP) cooling water, failure to
distribute the flow, and failure to provide medium and low pressure water. The L1ECC fault tree
focusses on the failure to provide long term low pressure cooling due to pump failure, valve failure, flow
blockage and loss of coolant supply. ECC is discussed in more detail in Chapter 7.

Before we get into the specifics of appli~ations,we develop safety criteria and design basis accidents in
the next two chapters.

2.16 Exercises

I. For the example fault tree of Section 2.11, calculate Ao from the success modes. Which way is
better
a. in the 4/6 case
b. in the 26/28 case?

2. A hom on a car operates on demand 99.96% of the time. Consider each event independent from
all others. How many times would you expect to be able to honk the hom with a 50% probability
ofnot having a single failure?

3. A light bulb has a A(t) = 5x10-7 t, where t is the time in days.
a. What is the MTTF for the bulb?
b. What is the MTTF ifA(t) = 5x10·7 t?
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